54 research outputs found

    Neonatal Pain-Related Stress Predicts Cortical Thickness at Age 7 Years in Children Born Very Preterm

    Get PDF
    Background Altered brain development is evident in children born very preterm (24–32 weeks gestational age), including reduction in gray and white matter volumes, and thinner cortex, from infancy to adolescence compared to term-born peers. However, many questions remain regarding the etiology. Infants born very preterm are exposed to repeated procedural pain-related stress during a period of very rapid brain development. In this vulnerable population, we have previously found that neonatal pain-related stress is associated with atypical brain development from birth to term-equivalent age. Our present aim was to evaluate whether neonatal pain-related stress (adjusted for clinical confounders of prematurity) is associated with altered cortical thickness in very preterm children at school age. Methods 42 right-handed children born very preterm (24–32 weeks gestational age) followed longitudinally from birth underwent 3-D T1 MRI neuroimaging at mean age 7.9 yrs. Children with severe brain injury and major motor/sensory/cognitive impairment were excluded. Regional cortical thickness was calculated using custom developed software utilizing FreeSurfer segmentation data. The association between neonatal pain-related stress (defined as the number of skin-breaking procedures) accounting for clinical confounders (gestational age, illness severity, infection, mechanical ventilation, surgeries, and morphine exposure), was examined in relation to cortical thickness using constrained principal component analysis followed by generalized linear modeling. Results After correcting for multiple comparisons and adjusting for neonatal clinical factors, greater neonatal pain-related stress was associated with significantly thinner cortex in 21/66 cerebral regions (p-values ranged from 0.00001 to 0.014), predominately in the frontal and parietal lobes. Conclusions In very preterm children without major sensory, motor or cognitive impairments, neonatal pain-related stress appears to be associated with thinner cortex in multiple regions at school age, independent of other neonatal risk factors

    Hippocampus, Amygdala, and Thalamus Volumes in Very Preterm Children at 8 Years: Neonatal Pain and Genetic Variation

    Get PDF
    Altered hippocampal morphology and reduced volumes have been found in children born preterm compared to full-term. Stress inhibits neurogenesis in the hippocampus, and neonatal stress/noxious stimulation in rodent pups are associated with long-term alterations in hippocampal volumes. We have previously shown reduced cortical thickness and cerebellar volumes in relation to more exposure to pain-related stress of neonatal invasive procedures in children born very preterm. We have reported targeted gene-by-pain environment interactions that contribute to long-term brain development and outcomes in this population. We now aim to determine whether exposure to pain-related stress (adjusted for clinical factors and genotype) differentially impacts regional structures within the limbic system and thalamus, and investigate relationships with outcomes in very preterm children. Our study included 57 children born very preterm (<32 weeks GA) followed longitudinally from birth who underwent 3-D T1 MRI neuroimaging at ∼8 years. Hippocampal subfields and white matter tracts, thalamus and amygdala were automatically segmented using the MAGeT Brain algorithm. The relationship between those subcortical brain volumes (adjusted for total brain volume) and neonatal invasive procedures, gestational age (GA), illness severity, postnatal infection, days of mechanical ventilation, number of surgeries, morphine exposure, and genotype (COMT, SLC6A4, and BDNF) was examined using constrained principal component analysis. We found that neonatal clinical factors and genotypes accounted for 46% of the overall variance in volumes of hippocampal subregions, tracts, basal ganglia, thalamus and amygdala. After controlling for clinical risk factors and total brain volume, greater neonatal invasive procedures was associated with lower volumes in the amygdala and thalamus (p = 0.0001) and an interaction with COMT genotype predicted smaller hippocampal subregional volume (p = 0.0001). More surgeries, days of ventilation, and lower GA were also related to smaller volumes in various subcortical regions (p < 0.002). These reduced volumes were in turn differentially related to poorer cognitive, visual-motor and behavioral outcomes. Our findings highlight the complexity that interplays when examining how exposure to early-life stress may impact brain development both at the structural and functional level, and provide new insight on possible novel avenues of research to discover brain-protective treatments to improve the care of children born preterm

    The Registry and Follow-Up of Complex Pediatric Therapies Program of Western Canada: A Mechanism for Service, Audit, and Research after Life-Saving Therapies for Young Children

    Get PDF
    Newly emerging health technologies are being developed to care for children with complex cardiac defects. Neurodevelopmental and childhood school-related outcomes are of great interest to parents of children receiving this care, care providers, and healthcare administrators. Since the 1970s, neonatal follow-up clinics have provided service, audit, and research for preterm infants as care for these at-risk children evolved. We have chosen to present for this issue the mechanism for longitudinal follow-up of survivors that we have developed for western Canada patterned after neonatal follow-up. Our program provides registration for young children receiving complex cardiac surgery, heart transplantation, ventricular assist device support, and extracorporeal life support among others. The program includes multidisciplinary assessments with appropriate neurodevelopmental intervention, active quality improvement evaluations, and outcomes research. Through this mechanism, consistently high (96%) follow-up over two years is maintained

    The Canadian Perinatal Network: A National Network Focused on Threatened Preterm Birth at 22 to 28 Weeks\u27 Gestation

    Get PDF
    Objective: The Canadian Perinatal Network (CPN) maintains an ongoing national database focused on threatened very preterm birth. The objective of the network is to facilitate between-hospital comparisons and other research that will lead to reductions in the burden of illness associated with very preterm birth. Methods: Women were included in the database if they were admitted to a participating tertiary perinatal unit at 22+0 to 28+6 weeks\u27 gestation with one or more conditions most commonly responsible for very preterm birth, including spontaneous preterm labour with contractions, incompetent cervix, prolapsing membranes, preterm prelabour rupture of membranes, gestational hypertension, intrauterine growth restriction, or antepartum hemorrhage. Data were collected by review of maternal and infant charts, entered directly into standardized electronic data forms and uploaded to the CPN via a secure network. Results: Between 2005 and 2009, the CPN enrolled 2524 women from 14 hospitals including those with preterm labour and contractions (27.4%), short cervix without contractions (16.3%), prolapsing membranes (9.4%), antepartum hemorrhage (26.0%), and preterm prelabour rupture of membranes (23 0%) The mean gestational age at enrolment was 25.9 ± 1.9 weeks and the mean gestation age at delivery was 29.9 ± 5.1 weeks; 57.0% delivered at \u3c 29 weeks and 75.4% at \u3c 34 weeks. Complication rates were high and included serious maternal complications (26 7%), stillbirth (8.2%), neonatal death (16.3%), neonatal intensive care unit admission (60 7%), and serious neonatal morbidity (35 0%). Conclusion: This national dataset contains detailed information about women at risk of very preterm birth. It is available to clinicians and researchers who are working with one or more CPN collaborators and who are interested in studies relating processes of care to maternal or perinatal outcomes

    Timing of delivery in a high-risk obstetric population: a clinical prediction model

    Get PDF
    The efficacy of antenatal corticosteroid treatment for women with threatened preterm birth depends on timely administration within 7 days before delivery. We modelled the probability of delivery within 7 days of admission to hospital among women presenting with threatened preterm birth, using routinely collected clinical characteristics
    corecore